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Abstract 

Spectra measured  by  off-axis  detectors in a  high-resolution Fourier transform 
spectrometer (FTS) are characterized  by kequency scaling,  asymmetry and broad- 
ening of  their  line  shape, and self-apodization in the  corresponding  interferogram. 
For a  narrow-band  input  spectrum and a specified  detector  geometry, a formalism 
is presented  that  accounts for these  effects  with  separate  terms. Some of the terms 
are used  to  correct the larger  off-axis  effects as part of calibration. The remain- 
ing terms are used  to  model  the residual effects  with the on-axis  instrument line 
shape. This approach is extended  to  the  broad-band case using filter banks. The 
technique is applied  to  simulated spectra  for the  Tropospheric Emissions  Spec- 
trometer (TES). This approach is shown  to  maintain  a  radiometric  accuracy  to less 
than 0.1%. 

1 Introduction 
High-resolution  imaging  Fourier  transform  spectrometers  have  become  an  increasingly 
important  tool  for  a  variety of remote  sensing  applications  including  astronomy [7] 
and  space-based  chemical  remote  sensing [ 10, 2, 11, 91. The  Tropospheric  Emission 
Spectrometer (TES) [3] is  a  polar  sun-synchronous FTS that  is  designed  to  measure  the 
global  chemical  state of  the troposphere. It has a  a  spectral  range of 3 . 3 - 1 5 . 4 ~  and  a 
maximum  spectral  resolution of 0.025 cm" [2]. TES has  two  viewing  modes:  the  nadir 
mode,  which  looks  down  toward  the  surface,  and  limb  mode,  which  looks  horizontally 
across  the  atmosphere.  The  nadir  mode  has  a  maximum  optical  path  difference (OPD) 
of 8.44696 cm" and  the  limb  has a maximum OPD of 33.78784 cm.  TES  has  limited 
imaging  capability  along  one  dimension with 16 pixels  that  have  a  spatial  resolution  of 
0.5 x 5 km  in the  nadir  mode  and 2.5 x 23 km  in the  limb  mode. 

The  retrieval of  this  chemical  state  requires  two  basic  steps,  denoted as Level 1B 
and  Level 2 [l]. In  Level lB, interferograms  measured by  TES are processed  to  pro- 
duce  calibrated  spectra.  In  Level 2, these  spectra  are  compared  to  a  model  spectrum 
generated  from an initial  guess of  the atmospheric  state.  The  parameters  specifying 
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the  atmospheric  state  are  iteratively  corrected  until  the  model  spectrum  matches  the 
measured  spectrum. 

In order  for  the  model  spectrum  to  correctly  match  the  measured  spectrum,  the ef- 
fects of the FI'S on  the  line  shape  and  position  of  the  spectra  must  be  either  corrected 
by  calibration  or  included  in  the  calculation  of  the  model  spectrum.  In  particular,  the 
optical  geometry of  an imaging FTS leads to a  number  of  effects  on  the  spectral  line 
shape  and  position  that  must  be  characterized. In an  ideal  Fourier  transform  spectrom- 
eter,  an  interferogram  is  measured  with  an  on-axis  point  detector.  In  this  case,  there  is  a 
simple,  linear  relationship  between  the  distance  traversed by one arm of  the interferom- 
eter  and  the  optical  path of the  incident  radiation.  For  a  detector of finite  dimensions, 
however,  the  relationship  between  the  interferometer arm length  and  the  optical  path of 
a ray  becomes  more  complicated  due  to  the  off-axis  angles  subtended. 

The  off-axis  geometry  for  TES  is  shown  in  Figure (l)(a). Spectra  measured by off- 
axis  detectors  are  altered  in  several  ways.  Figure  (2)(b)  shows  one  side of a  uniformally 
illuminated,  symmetric  interferogram of a  simulated  monochromatic  input  radiance  at 
v = 2537.5 cm"  measured  off-axis  by  pixel 8 and  Figure  (2)(a)  shows  interferogram 
of the  same  input  radiance  measured on  the  optical  axis.  The  off-axis  interferogram 
is  generated  by  calculating  rays  across  the  pixel  with  a  pixel  response  described  in 
Figure (l)(b). Figure (2)(c) shows  the  Fourier  transform  of  the  on-axis  and  off-axis 
interferograms in the  limb  mode.  The  off-axis  interferogram in  Figure  (2)(b)  appears 
to  be  a  cosinusoid  modulated by  some  envelope  function.  The  interferogram  is re- 
ferred  to  as  being  "self-apodized"  since  the  off-axis  geometry  itself  appears  to  impose 
an  apodization  function on the  interferogram [4]. The  self-apodization of  the inter- 
ferogram  results  in  an ILS that is broadened  in  frequency  and  reduced  in  amplitude, 
as  shown  in  Figure (2)(c). In  addition,  the  instrument  line  shape  (ILS)  appears  to  be 
shifted  in  frequency  and  the  side-lobes of  the  ILS are  asymmetric.  These  four  charac- 
teristics  are  deviations  from  the  monochromatic  input  radiance  measured  on-axis.  The 
first  three  characteristics are a  direct  result of  measurement  with  an  extended  detec- 
tor.  These  characteristics are well-understood  for  a  finite  and  circular  field  stop [5,41. 
The asymmetry  in  the  line  shape,  however,  is  due to the  detectors  having  a  rectangular 
shape  rather  than  being  a  square.  All  of  these  characteristics  must  be  corrected  in  Level 
1B or  modeled  in  Level  2. 

The  rest of the  paper  will  describe  a  methodology  for  correcting  and  modeling 
the  off-axis  effects on the  spectrum. An analysis of  the off-axis  geometry  will show 
how  the afore  mentioned  characteristics  can  be  separated.  For  narrow-band  spectra,  the 
self-apodization,  frequency  scaling,  and  line  broadening  effects may be  corrected  in  the 
calibration  process  whereas  the  asymmetry  must  be  modeled in  Level  2.  This  approach 
can  be  extended to broad-band  spectra by dividing  the  spectra  using  filter  banks  into 
smaller  frequency  bands  and  then  applying  corrections  to  those  bands. The methodol- 
ogy  will  then  be  applied  to  a  broad-band  spectrum  for  the  TES  optical  geometry. 

2 Analysis  of  off-axis  geometry 
Figure (l)(a) shows  the  path  of a ray to a  pixel  positioned  off-axis.  The  output of  the 
detector is equal to  the  integral  over  all  incident  rays  weighted  by  the  pixel  response 
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function  and  over  all  wavelengths.  The  interferogram  is  related  to  the  input  spectrum 
by 

where B(a, p) is the  illumination  across  the  pixel, P(a, p) is  the  angular  response of 
the  detector, L(v) is the  input  spectrum, ai and ai+l are  the  angles  to  the  lower  and 
upper  edge of the  ith  pixel,  and pw is  the  angle  to  the  maximum  horizontal  extent  of 
the  pixel.  The  angle of a  ray,  denoted  by $, is  related  to  the  angles a and fi by 

tan2$=tan2a+tan2p. (2)  

Equation (1) can  be  interpreted as an  interferogram  that  is  equal  to  a  sum of interfero- 
grams  generated by  each  ray of incident  radiance.  Thus,  a  given  distance  traversed by 
the  interferometer arm, say f ,  now corresponds  to  rays  summed  over  slightly  different 
optical  paths. 

Alternatively,  the  measured  off-axis  spectrum  can  be  related to the  input  spectrum 
by  changing  the  order  of  the  integration  and  setting v‘ = cos($(a, p))v. Equation (1) is 
then  written as 

The off-axis  spectrum  is  simply  the  kernel of  the  Fourier  transform  in  Equation (3), or 

From  Equation (4), the  off-axis  spectrum  is  equal  to  the  sum of input  radiances  scaled 
by the  factor l/cos(@(a,P)) where  each  input  radiance  corresponds  to  a  separate  ray. 
For  cos(@(O,O)) = 1 and P(0,O) = 1, the  ray  is  on-axis  and  the  input  spectrum  is now 
equal  to  the  measured  spectrum.  Note  that cos($(a,p)) 5 1,  which  reflects  the  fact 
that  for  a  given arm length,  the  optical  path  difference (OPD)  of off-axis  rays  is  always 
less  than the OPD  of on-axis  rays. As a  consequence,  the  measured  spectrum  is  always 
scaled  toward  lower  frequencies  relative to the  input  spectrum. 

With  some  simplifying  assumptions  on  Equation (l), these  off-axis  effects can  be 
separated  into  terms.  For @ < 10  mrad,  which is  the  maximum  off-axis  angle, $ ap- 
proximates tan@ to  within  11  significant  digits.  Therefore,  Equation (2) can  be approx- 
imated by 

$2 M a2 + p2, (5 )  

and  thus 

a2 + p2 cos@(a,p) M 1 - ~ 

2 .  
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a) TES pixel array with respect to optical axis 

b) Assumptions for integration ovcr half-pixel 

Figure 1: Off-axis  geometry  and  assumed  pixel  response  function  for  for TES detec- 
tors. 

Substituting  Equation (6) into  Equation (1) leads  to 

Z(x) M 2Re { 1- L(v)A(vx)e"2xvxdv 

where 

The function  A(vx)  is  called  the Fresnel kernel. The  Fresnel  kernel  completely  de- 
scribes  the  effects of the  off-axis  geometry  on  the  interferogram  and  spectrum. 

The  Fresnel  kernel  can  be  written  in  phaser  form as 

A (vx) = I A (vx) I (9) 

For v = 2537.5 cm" and  pixel 8, the  magnitude  and  phase of the  Fresnel  kernel is 
shown  in  Figure  (3).  The  magnitude  of  the  Fresnel  kernel  in  Figure  (3)(a)  corresponds 
to  the  envelope  or  "self-apodization" of the  off-axis  interferogram  shown in Figure (2). 
Hence,  the  Fresnel  magnitude  function  is  called  the self--apodizationfunction. The 
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Figure 2: (a) Simulated  on-axis  interferogram  for  a  limb view  at  pixel 8. (b)  Simulated 
off-axis  interferogram  measured  at  pixel 8. The  off-axis  interferogram  decreases in 
amplitude with OPD. (c)  The  ILS  for  a  spectrum  measured  on-axis  and  off-axis.  The 
off-axis  spectrum is attenuated in amplitude,  asymmetric  about  the  center  frequency, 
line-broadened,  and  shifted  down in frequency  with  respect  to  the  on-axis  ILS  for  the 
same  input  frequency. 

phase  function of  the Fresnel  kernel,  shown  in  Figure (3)(b), is dominated by a  linear 
term. The slope of  this  term  corresponds  to  the  frequency  shift  shown  in  Figure (2)(c). 

This  phase  function,  however,  is  non-linear. The Fresnel  phase  function  can  be 
decomposed  into  linear  and  non-linear  components,  denoted  as 

Substituting  Equation (9) and  Equation (10) into  Equation (7) leads  to 

For  a  narrow  band  spectrum  the  self-apodization  function  and  the  non-linear  compo- 
nent of the  phase  function  can be approximated as a  constant  function of frequency. 
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Denoting  the  mean  frequency  as 0, Equation (1 1)  becomes 

where ZL(X) is interpreted  as  an  interferogram  measured  on-axis.  The  first  term in 
Equation (12) is  the  self-apodization  function  and  the  second  term  represents  the  non- 
linear  portion of  the Fresnel phaqe function.  This  phase  function, ~ ( V X ) ,  is  called  the 
residual Fresnel phase function or  simply  the residual phase  function. The  residual 
phase  function  is  shown in Figure  (4)(a).  The  term e''@) is treated as a  complex  ILS 
function  and  is  called  the residual Z L S  function. The Fourier  transform of the  resid- 
ual  ILS  function  is  shown in Figure  (4)(b).  The  side-lobes  depicted  in  Figure  (4)(b) 
are asymmetric.  Hence  the  convolution of  the Fourier  transform of the  residual  ILS 
function  with  a  monochromatic  input  will  also  result in asymmetric  side-lobes of  the 
spectrum  as  shown in Figure  (2)(c).  Finally,  the  spectrum  is  scaled by 1/( 1 - p).  The 
slope of  the  Fresnel  phase  function, p, is also  called  the off-axis  compression factor and 
the  term (1  - p) is  the off-axis  scale factor. What  appears  to  be a  shift in Figure (2)(c) 
is  actually  a  scaling. 

The  Fresnel  kernel  described in Equation (8) and in Equation  (12)  capture  the  ob- 
served  features of off-axis  spectra: 

the  magnitude of  the  Fresnel  kernel  describes  the  envelope  of  the  interferogram 
as well as the  broadening  and  the  decrease in amplitude of the  spectrum, 

the  non-linear  phase  term of the  Fresnel  kernel  describes  the  asymmetry of  the 
spectrum, 

the  linear  phase  term of the  Fresnel  kernel  describes  the  scaling of the  input 
radiance. 

3 Correction  and  modeling  for  narrow-band  spectra 
The expression  of  the  interferogram  in  Equation  (12)  becomes  the  basis  for  the  correc- 
tion  and  modeling  of  narrow-band  spectra.  For  a  narrow  frequency  band,  we  can  ignore 
the  frequency  dependence of the  self-apodization  and  residual ILS function.  With  this 
approximation,  self-apodization  term  can  be  simply  divided  out of the  interferogram. 
The residual  ILS  function, on  the  other  hand,  will  have  to  be  modeled  in  Level  2  be- 
cause  it  is  a  complex  function  and  therefore  can  not  be  removed  from  inside  the  real 
operator. The scaling of  the  spectrum  can  be  removed  by  rescaling  the  frequency  axis 
and  interpolating  onto  the  on-axis  frequency  grid  using  an  FFT  signal-interpolation 
method [SI. 

The  steps  used  to  test  this  approach  are  shown  in  Figure (6). For  a  given  pixel,  an 
off-axis  interferogram  is  generated by evaluating  Equation (7) with  the  Fresnel  kernel 
defined  in  Equation (8). The  interferogram  is  then  divided by the  self-apodization 
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Figure 3: (a) The  magnitude of the  Fresnel  kernel (b) the  phase of the  Fresnel  kernel 
for v = 2537.5 cm" 

function.  The  interferogram  is  transformed  into  spectral  space  and  the  frequency  scale 
corrected. The spectrum  is  subsequently  interpolated  onto  the  on-axis  frequency  grid 
resulting in the  Level 1B corrected  spectrum.  In  this  case,  the  spectrum  is  assumed 
to  have  been  previously  calibrated.  In  Level 2, a  model  interferogram  is  multiplied 
by the  residual  ILS  function, which  was  calculated  from the  Fresnel  kernel,  and  then 
transformed  into  spectral  space.  The  Level 2 model  spectrum  is  then  compared  with 
the  Level 1B corrected  spectrum. 

These  steps  are  illustrated in Figure (7) for  a  spectrum  measured  from  pixel 8. The 
calculation of the  Fresnel  kernel  assumes  uniform  illumination  and  a  uniform  pixel 
response  along  the  length with a  response  along  the  height  depicted  in  Figure (5). By 
symmetry,  only  half  the  length  along  the  pixel  needs  to  be  integrated.  The  integration 
was performed  using 100 points  for  the  length  and 21 points  for  the  width.  The  pixels 
are  assumed to be  adjacent  with  no  gaps  and  the  optical  axis  is  assumed  to  bisect 
pixels - 1 and 1. The  errors  for  each of  the  major  steps  is  shown  in  Table (1) for three 
different  frequency  regimes.  For  TES,  the  total  radiometric  accuracy  is  required  to 
be  better  than 1%. We have  chosen 0.1% radiance  as  the  maximum  tolerable  error 
for  the  difference  between  the  corrected  Level 1B spectrum  and  the  Level 2 spectrum 
with  the  residual ILS model.  This  radiometric  accuracy  requirement  is  satisfied for 
frequency  bands  smaller  than 10 cm" . In atmospheric  retrievals,  narrow-band  spectra, 
i.e.,  micro-windows,  are  frequently  used  to  estimate  the  chemical  state. For these  cases, 
the  correction  approach  based  on  a  monochromatic  frequency  is  adequate.  However, 
for  broad-band  spectra,  this  technique  must  be  extended  via  filter  banks. 
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Table  1:  Error  levels  for  ILS  correction & modeling  processing  steps  using  simulated 
limb  views  for  pixel  1  (8th  off-axis  pixel).  Center of range  used  as  correction  frequency. 
For  simulated  limb  spectra,  the  error is  defined  as  the  maximum difference  divided by 
the  average  signal. 

Frequency 

2459-2464 

1047.5-1052.5 

1040-1060 
1040-1060 

Processing  step  max.  error/ 

0.14%  on-axis  with  L2  model - L1B 
0.3% on-axis (no L2  model) - LIB 

6% L1B  correction - uncorrected 
0.024% on-axis  with  L2  model - L1B 

0.3% on-axis  (no  L2  model) - L1B 
5.5% L1B  correction - uncorrected 

0.05%  on-axis  with  L2  model - L1B 
3% on-axis  (no  L2  model) - L1B 

10% L1B  correction - uncorrected 
avg.  signal 

-0.15 4 
0 J 10 15 20 25 30 35 

(a)  cm 

,3 0 050 
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5 0000 
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0.10 

Figure 4: (a) The residual  Fresnel  pha$e  function  (b)  The  Fourier  transform  of  the 
residual ILS function 
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Expected pixel response 

-2 - I  0 1 2 
distance from pixel center (rnillirad) 

Figure 5: Expected  pixel  response  along array axis. Although  the  physical  width of 
each  pixel  is 0.75 millirad,  the  response  is  wider  than  this  due  to  diffraction  and  charge 
diffusion. Stars represent  the  points  included in the  interferogram  model  integration. 
(Angles  corresponding to  intensities  lower  than  2db  below  the  maximum  were not 
included). 

9 



Test of Off-Axis ILS Correction and Modeling 

off-axk I L S  after 
I2 model of residual 
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Figure 6: Validation  steps  for  off-axis ILS correction  and  modeling  algorithms. 
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Figure 7: Spectra  and  spectral differences at  different  stages in the off-axis ILS correc- 
tion/residual  modeling.  Horizontal  lines  in  plots  e & f indicate 0.1% error level. 



4 Correction  and  modeling  for  broad-band  spectra 
For  frequency  bands of  width  less  than 10 cm",  we  can neglect  the  frequency  de- 
pendence of the  Fresnel  kernel  in  Equation  (12).  This  technique  can  be  extended  to  a 
broad-band  spectrum by splitting  the  spectrum  into  narrow  frequency  bands.  The  input 
spectrum  is  then  represented  as 

L(v) = L l ( v ) + L 2 ( V ) + " ' + L M ( v ) ,  ( 14) 

where M is the  number of  bands  and L, (v) is non-zero  only on the  interval v E [Vn , Vn+ 11 I 
Equation  (14) is equivalent  to  passing  the  spectrum  through  a  contiguous  set of ideal 
narrow  band-pass  filters.  Each of the  interferograms, I1 (x)  , Z2 (x) ,  . . . , ZM ( x )  correspond- 
ing  to  the  frequency  bands,  can  be  modeled by Equation  (13). The self-apodization  and 
residual ILS functions are calculated  for  the  frequencies  defined  by 

which  is the  center of  the  band. 
The  principle  problem, however, is  to  calculate Zn(x)  in  the  first  place.  Moreover, 

it must be  possible  after  the  correction  for  self-apodization  to  reconstruct  the  com- 
plete  interferogram Z(x). In  the  absence of  any  correction,  this  reconstruction  should 
be  perfect.  There  exists an  efficient  technique  known  as  "filter  banks"  (or  wavelets) 
that  can  efficiently  split  a  spectrum  into  bands  in  such  a way as to  allow for perfect 
reconstruction  from  those  bands  [12,61. 

4.1 Filter banks 
Filter  banks  are  a  means of splitting  a  signal  into  frequency  subbands.  The  principle 
advantage of filter  banks  over  other  filtering  techniques  is  that  the  signal  can  be re- 
constructed perfectly from  its  subband  components.  In  fact,  filter  banks are generally 
orthogonal  or  biorthogonal  transformations.  In  addition  to  (bi)orthogonality,  the  com- 
putational  efficiency of filter  banks  is  comparable  to  a  fast  Fourier  transform (FFI'). 

A simple,  2-channel  filter  bank  is  shown  in  Figure (8). The  filter  bank  is  composed 
of linear  time-invariant (LTI) filters,  downsamplers,  and  upsamplers.  The  interfero- 
gram,  denoted by  Z[n],  is  convolved  with  the impulse  response  functions , ho[n] and 
go[n], of  low and  high  pass  filters,  respectively.  The  magnitudes  of  the  frequency  re- 
sponse of go and ho are  shown  in  Figure (9). The  impulse  response  functions  for  these 
filters are listed  in  Table  (2). 

After  convolution,  the  signals  are  then  downsampled.  For  the  two-band  case,  the 
downsampler  operator  is  defined  as 181 

(4 2Z)[n] = Z[2n]. (16) 

Thus,  the  signal  lengths of the  high-passed  and  low-passed  interferograms  are  cut in 
half and  the  band-width of  both  interferograms  is  reduced  by  a  half.  If  the  input  signal 
is  not  sufficiently  band-limited,  then  the  downsampling  operation  will  cause  aliasing. 
The  filters  in  Figure (8) are  designed,  however,  to  insure  that  this  aliasing  does  not 
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occur. The filters  and  downsamplers  on  the  left  side of the  vertical  dash  in  Figure (8) 
comprise  the analysis part of the  filter  bank. 

The synthesis part  of  the  filter  bank,  which  is  on  the  right  side  of  the  vertical  dash,  is 
composed of upsamplers  and  filters.  For  the  two-channel  case,  an  upsampler  is  defined 
as [81 

(t 2)f[n] = [ n=0,&2,&4, . . .  
otherwise. 

The upsampling  operator  scales  the  spectrum of  the signal by a  factor of 2. 
After  the  upsampling  operation,  the  low-pass  and  high-pass  signals  are  then  filtered 

again by hl [n] and g l  [n], respectively.  The  output  signals of  the filtering  operation  are 
then  recombined. 

For  certain ho, h l ,  go, and g l ,  the  recombined  signal  will  be  the  same  as  the  input 
signal.  The  filter  bank  is  then  said to  be a pe$ect reconstruction filter  bank. We will 
restrict our attention  to  finite  impulse  response (FIR) biorthogonal  linear-phase  filter 
banks [6, 121. Filter  banks  based on FIR filters  are  computational  efficient.  Biorthog- 
onal,  linear-phase  filters  are  used  to  insure so that  the  symmetry of  the  interferograms 
and  the pha9e  of their  spectra  are  unchanged. 

It should  be  pointed  out  that  Figure (8) shows  the  filter  bank  at  a  conceptual  level. 
Filter  banks  are not implemented as filters  followed  by  downsamplers.  Instead,  the 
input  signal  is  separated  into  even  and  odd  components.  When  this  is  done,  the  down- 
samplers  in  the  analysis  bank  can  be  interchanged  with  the  filters.  Restructuring  the 
filter  bank  in  this  way  is  known as a polyphase implementation [ 121. This  form of the 
filter  bank  is  very  efficient.  For FIR filters  with  filter  coefficients of length  M  and  an 
input  signal of length  N, 

operations  needed  to  generate  output of analysis  bank < 2MN. (18) 

An Fm, on  the other  hand,  requires  O(N1ogN)  multiplications.  Thus,  for  filters  with  a 
small  number of coefficients,  filter  banks  can  actually  be  computed  faster  than  an  FFT. 

The  properties of the  2-channel  case  can  be  easily  extended to higher  channels. 
Figure (10) shows  the  analysis  part of a  4-channel  filter  bank.  The  low-pass  and  high- 
pass  components of the  first  stage  are  split  again  into  smaller  frequency  bands.  Since 
each  stage of the  analysis  bank  can  be  perfectly  reconstructed  from  the  same  stage  in 
the  synthesis  bank,  the  entire  filter  bank  maintains  the  perfect  reconstruction  property. 
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Analysis Synthesis 

Figure 8: 2-channel  filter bank 

Figure 9: Frequency  response of the  biorthogonal  filters.  The  low-pass  frequency re- 
sponse is Ho(o) and  the high-pa$s  frequency  response is Go(w). 
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Figure 10: 4-channel  filter bank ba,ed on  iterating  the  2-channel case. Only  the  analy- 
sis bank is  shown.  The  synthesis bank is simply  the  reverse of the  analysis  bank  where 
the  downsamplers  are  replaced by upsamplers. 
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4.2 Correction  and  modeling  for  two-band  case 
The testing  procedure  and  description of  the  off-axis  ILS  correction  and  modeling  algo- 
rithm  is  similar  to  the  narrow-band  case  shown  in  Figure  (6)  except  that  the  measured 
off-axis  interferogram  and  the  Level  2  model  interferogram  are  split  into  a  set of inter- 
ferograms  using  filter  banks. 

Figure (1 1)  shows  the  processing  steps  for  Level 1B for  a  two-band  case.  The 
approach  can  be  extended to a  greater  number of channels in a  straight-forward  manner. 
First,  the  spectrum  is  radiometrically  calibrated.  Then,  the  measured  interferogram  is 
split  into  two  interferograms  that  represent  the  low-paw  and  high-pass  parts of  the 
spectrum,  respectively.  Thus,  these  two  interferograms,  Zl[n]  and Zz[n], correspond  to 
the  frequency  bands  in  Equation  (14).  The  self-apodization  term in Equation (12) is 
divided  out  from  both  interferograms  and  then  recombined  into  two  interferograms. 
Finally,  the  interferogram is  resampled at  the  rate of  the scale  factor.  The  Level  1B 
output  interferogram Z L ~ B [ ~ ]  still has the  residual ILS terms,  which  must  be  removed  in 
Level 2. 

Figure (12) shows  the  processing  steps  for  Level  2.  The  forward  model  interfero- 
gram, [ ~ [ n ] .  is split  into  a  low-pass  interferogram ZFJ [n] and  a  high-pass  interferogram 
Z~,z[n].  Each  interferogram is  then  multiplied  by a  residual  ILS  function  evaluated  at 
31 and 3 2 ,  respectively.  The  resulting  interferograms  are  then  recombined  to  produce 
I&]. Ideally,  the  difference  between I&.] and ZL&] is  negligible. 

inv(lA(v9)l) 

Figure  11:  Level 1B processing:  The  functions ho[n] and hl [n] refer  to  low-pass  filters 
while go[n] and gl[n] refer to high-pa%  filters.  The  uparrows  and  downarrows  refer to 
upsampling  and  downsampling,  respectively. 

This  technique was tested  for  a  simulated  limb  spectrum  over  a  spectral  region 
between  1040 - 1060 cm" . An off-axis  interferogram was modeledusing  Equation (7) 
for  the  8th  off-axis  detector  element  awuming  uniform  illumination.  The  Fresnel  kernel 
was  calculated  for 31 = 1045 cm" and 32 = 1055  cm". The  off-axis  compression 
factor  for  both  Fresnel  kernels was p = 1.818 x The  magnitudes of the  Fresnel 
kernels  and  their  non-linear  phases  are  shown in Figures (13) and  (14).  The  filter  bank 
coefficients  for ho[n] and hl [n]  are  shown  in  Table (2). The  coefficients  for go[n] and 
gl[n] can  be  calculated  directly  from ho[n] and hl[n] [12].  Note  that  we  have  only 
listed  half  of the  coefficients  for  each  filter.  These  filters  are  symmetric  about  the  first 
elements  in  Table (2). The  spectrum  produced  from  Level 1B processing for this  case 
is  shown  in  Figure  (15).  The  error  between  the  on-axis  spectrum  and  the  Level 1B 
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Figure  12:  Level  2  processing 

corrected  spectrum  is  defined  as 

In  this  case, = .00289,  which  is  roughly a  .3%  error.  The  on-axis  interferogram 
is now multiplied by  the  residual  ILS  functions  via  the  filter  banks  in  Figure  (12).  The 
resulting  spectrum is compared to the  output of the  Level 1B processing,  which  is 
shown  in Figure  (16).  The  error  between  the  Level 1B processing  and  Level  2  is now 
~ ~ ~ d ~ ~ ~ d  = .0005 19,  which is  over  a  factor of 5 improvement  than just doing  the  Level 
1B processing  alone.  Moreover,  this  systematic  error,  which  is  around .05% is  quite 
acceptable  compared  to  the  estimated  measurement  error of  .36% for  the  1B2  filter  in 
the  tropics [ 11. 

Table  2:  Fil j r  bank  coefficients 
.38326971 

.767245 

.383269 
-.068867 
-.033475 
.047282 
.003759 

-.008473 

.448 109 
-.069163 
-.lo8737 
.006292 
.014182 
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Figure 13: Magnitude of the  Fresnel  kernel,  which  is  also  called  the  self-apodization 
function,  for  1045  and  1055 cm" 

i 

Figure  14:  Residual  Fresnel  phase  function  for  1045 and 1055 cm". The  complex 
exponent of these  functions  are  the  residual ILS functions. 
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I ~ I O - ~ C .  ' '  1 ' '  I 1 .  ' I 1 ' '  

Differ-ence: on-axis - L 1  B corr-ected off-axis 

Figure 15: Comparison  between  on-axis  spectrum  and  the  off-axis  spectrum  after  Level 
1B correction.  The  off-axis  spectrum was split  into two  subbands  using  filter  banks. 
The self-apodization  functions  were  applied  respective  interferograms of  the  subbands. 
The  subbands  were  reconstructed  and  then  scale  corrected.  The  error  stated  above  the 
difference  plot  is  defined as the  maximum  difference  between  the  on-axis  and  Level 
1B corrected  off-axis  divided by  the  mean  value  of  the  on-axis  spectrum. 
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Convolved on-axis limb spectrum, MLS model 
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Differ nce: on-axis with L2 ILS residual  correction - L1 B corrected off-axis 
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Figure 16: Comparison  between  the  on-axis  spectrum  with  the  residual  ILS  functions 
and  the off-axis spectrum  after  Level 1B correction.  The  error  increases  for  spectral 
points  that  are  farther  away  from  the  correcting  frequencies. 
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5 Non-uniform  illumination 
The previous  examples  have  assumed  a  known,  uniform  illumination  over  the  pixel. 
In  practice  the  actual  illumination can vary and  is  generally  not  known. To test  the 
sensitivity of the  method  to  illumination  errors  we  calculated  a  gradient  illumination, 
which  was  assumed  to be  constant  in  the  horizontal  direction  but  drops off linearly 
from  one  to  zero  in  the  vertical  direction.  This  represents  a  "worst  case"  situation, 
but  has  similarities  to  a  pixel  viewing  the  tropopause  in  either  its  upper  or  lower  edge. 
Figure  (17)  shows  the  effective  pixel  response  under  gradient  illumination.  The  Fresnel 
kernel was calculated  for  both  uniform  and  gradient  illumination  for  1050 cm". 

The Fresnel  kernel  calculated  for  the  gradient  illumination was applied  to  the  off- 
axis  spectrum  described  in  Figure  (7)  under  uniform  illumination.  The  corrections  were 
made  over  a 5 cm"  window. The  errors  for the  uniformally  and  gradient  illuminated 
case are shown  in  Table (3). For  the  uniform  case,  there  are  no  model  errors  and thus 
they  establish  a  baseline.  For  the  gradient  case,  the  error in the  Level  1B  correction 
increases by approximately  a  factor of  2. This  error,  however,  is  still  considered  ac- 
ceptable. The Level  2  residual  correction,  on  the  other  hand, is  an order of magnitude 
worse  than  the  Level 1B correction  only.  In  this  case,  it  would be better to not  apply  the 
Level  2  residual  modelling  at  all.  The  explanation  for  this  performance  can be  seen  by 
examining  the  change in the  self-apodization  and  residual ILS phase  functions,  which 
are shown  in Figure  (18).  The  self-apodization  function has only  a  slight  variation  with 
illumination  whereas  the  residual  ILS  phase  function  has  changed  significantly. 

The  variation of  the  illumination  appears  to  change  the  slope  of  the  residual  ILS 
function.  This  suggests  that  the  residual  ILS  function  could  be  parameterized  as  a 
function of the  field-of-view  (FOV)  illumination,  which  is  estimated  during  the re- 
trieval.  From  the  estimated FOV,  the residual  ILS  function  could  be  calculated,  leading 
to  a  more  robust  algorithm.  The  effect of illumination  on  the  ILS  underscores  the 
importance of separating  the  self-apodization  correction in  Level  1B  and  the  residual 
modeling in Level 2. The  Level 1B correction  allows  the  spectra  from  all of  the pixels to 
be  intercompared  even  in  the  presence  of  non-uniform  illumination  between  the  pixels. 
Modelling  the  ILS  entirely  does  not  allow  one  to  separate  those  ILS  effects  insensi- 
tive  to  non-uniform  illumination  from  those  effects  that  are  sensitive  to  non-uniform 
illumination. 

Table 3: Error  levels  for  ILS  correction & modeling  processing  steps  using  simulated 
limb  views  for  pixel  1  (8th  off-axis  pixel)  for  both  the  cases of  known (uniform)  illu- 
mination  and  illumination  mismatch  (gradient). 

I Illumination I Processing  step I max.  error/ 
1 avg.  signal 

Uniform I on-axis  (no  L2  model) - L1B I .27% 
Uniform I on-axis  with  L2  model - L1B I 0.024% 
Gradient I on-axis (no L2  model) - L1B I 0.56% 
Gradient I on-axis  with  L2  model - L1B I 5.6% 
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Figure 17: Pixel  response  of the detector  under  non-uniform  and  gradient  illumination. 
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Figure 18: The  self-apodization  functions and  residual ILS phase  functions  under  uni- 
form  and  non-uniform  illumination. 
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6 Conclusions 
A technique  has  been  described  that  corrects  and  models  the  instrument  line  shape 
for an off-axis  detector  geometry in  an imaging  Fourier  transform  spectrometer.  This 
geometry  induces  self-apodization,  frequency  scaling,  line  broadening,  and  asymmetry 
to  the  line  shape.  For  off-axis  pixels  that  subtend  small  incident  rays of radiation,  the 
effects of  the  off-axis  geometry  on  the  instrument  line  shape  can  be  described  by  the 
Fresnel  kernel. The magnitude of  the  Fresnel  kernel  corresponds  to  the  self-apodization 
and  line-broadening  while  the  phase  of  the  Fresnel  kernel  corresponds  to  the  frequency 
scaling  and  asymmetry. It was  shown  that  the  self-apodization,  line  broadening,  and 
frequency  scaling  can  be  removed  in  the  Level  1B  calibration  processing  whereaq  the 
term  associated  line  shape  asymmetry  must  be  modeled in  Level  2. 

The  off-axis ILS algorithm was applied  to  narrow-band  and  broad-band  spectra. 
For  spectra  with  bandwidths  less  the  10 cm", a  direct  application of  the  off-axis  for- 
malism  is  sufficient  to  achieve  a .l% radiometric  accuracy.  For  greater  spectral  band- 
widths,  the  technique of filter  banks was  used  to  split  a  spectrum  into  small  bands.  The 
formalism  could  then  be  applied  separately  to  each  band.  This  technique was applied 
to  a  spectrum  with  a  bandwidth  of  20 cm-l. For  the  two-band  case,  the  radiometric 
error was approximately .05%. It was also shown  how this  technique  can  be  extended 
to  correction  and  modeling of off-axis  spectra  greater  bandwidths in a  straight-forward 
manner. 

The  sensitivity of non-uniform  illumination on this  technique was also  examined. 
In  particular,  we  examined  the  case of a  vertical  gradient  in  the  illumination. We found 
that  the  Level 1B correction  is  relatively  insensitive to changes in illumination  but 
the  Level  2  residual  corrections  are  sensitive to illumination.  This  result  confirms  the 
need of separating  Level 1B corrections  from  modeling  residual  effects in Level 2. 
We suggest  using  the  relative  radiance  distribution  across  the FOV that  is  estimated 
as  part of  the  retrieval  to  modify  the  residual ILS functions  thereby  accounting for the 
non-uniform  illumination. 
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